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Abstract

Motion forecasts of road users (i.e., agents) vary in
complexity as a function of scene constraints and in-
teractive behavior. We address this with a multi-task
learning method for motion forecasting that includes a
retrocausal flow of information. The corresponding tasks
are to forecast (1) marginal trajectory distributions for
all modeled agents and (2) joint trajectory distributions
for interacting agents. Using a transformer model, we
generate the joint distributions by re-encoding marginal
distributions followed by pairwise modeling. This in-
corporates a retrocausal flow of information from later
points in marginal trajectories to earlier points in joint
trajectories. Per trajectory point, we model positional
uncertainty using compressed exponential power distri-
butions. Additionally, our method provides an interface
for issuing instructions through trajectory modifications.
Our experiments show that regular training of motion
forecasting without instructions leads to the ability to adapt
basic directional instructions to the scene context. Code:
https://github.com/kit-mrt/future-motion

1. Method
We forecast multiple trajectories per modeled agent. A
trajectory is a sequence of future positions (x- and y-
coordinates) with positional uncertainties represented as
probability densities. Using mixture distributions, our
method decomposes motion forecasts in three ways.

1.1. Decomposing exponential power distributions
We model the positional uncertainty per trajectory point as
density of an exponential power distribution. Platikurtic
densities (i.e., with flatter peaks) and densities with wide
tails result in large uncertainties close to forecasted posi-
tions, which is undesirable in subsequent planning. There-
fore, we limit the shape parameter of exponential power dis-
tributions to the range of 1.0 to 2.0. We approximate this as
a mixture distribution of a bivariate normal and a bivariate

Laplace distribution, with the mixture density

D(w,ϕ) = w ·Normal(ϕ) + (1− w) · Laplace(ϕ), (1)

for learned weights 0 ≤ w ≤ 1 and shared density pa-
rameters ϕ = (µx, µy, σx, σy), with location parameters
µ and scale parameters σ. Following common practice
[12, 19, 20], we model the x- and y-coordinates as uncor-
related random variables. In the following, we include w in
the tuple of density parameters ϕ.

1.2. Decomposing marginal trajectory distributions

We train a distinct decoder to perform marginal motion
forecasting (i.e., per-agent). Following common practice
[2, 12, 18], we predict the density of a mixture distribu-
tion at each future time step and fix mixture weights over
time. The per-agent mixture components describe future
positions of the same agent, but from different trajectories.
Formally, we follow Bishop [1] and express this as

Pmarginal
t (y | x;θ) =

K∑
k=1

mk(x;θ) · D
(
y | ϕt,k(x;θ)

)
,

(2)
where x is the input (Sec. 1.5), y the target vector, t ∈
{1, ..., T} are future time steps, K is the number of tra-
jectories, k indexes the corresponding mixture components,
and m are mixture weights. Unlike mixture weights, den-
sity parameters ϕ are variable across components and time
steps.

1.3. Decomposing joint trajectory distributions

We generate joint trajectory distributions by re-encoding
marginal distributions followed by pairwise modeling. To
effectively exchange information between agents, we trans-
form all trajectories to the local reference frame of agent
1 and use the scene context embeddings of agent 1 (cf.
Sec. 1.5). Afterwards, we exchange information via atten-
tion mechanisms and decode joint trajectory distributions
using multi-agent mixture components (see Fig. 1). Per
time step t, each mixture component is a mixture density
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itself, describing one future position of each modeled agent

P joint
t (y | x;θ) =

K∑
k=1

ck

A∑
a=1

Mk,a(x;θ) · D
(
y | ϕt,k,a(x;θ)

)
,

(3)
where A is the number of agents and M is a matrix of per-
agent mixture weights. We compute multi-agent mixture
weights with c = softmax

(∑A
a=1 M1:K,a/τ

)
and a tun-

able temperature parameter τ .
As shown in Fig. 1, this approximates the joint distribu-

tion of all combinations of per-agent mixture components
by focusing on the diagonal query pairs in matrix form.
Off-diagonal query pairs can update diagonal pairs through
attention mechanisms, which compresses information from
all K2 possible combinations into K query pairs.
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Figure 1. From marginal to joint trajectories. We use an MLP
to generate query matrices Q from marginal trajectories and ex-
change information between queries and scene context with atten-
tion mechanisms. Afterwards, we decode joint trajectories P joint

1:T

from pairs of queries at the same index. This compresses informa-
tion from all K2 possible combinations into K query pairs.

For both marginal and joint motion forecasts, we follow
related methods [2, 14, 19] and use the out-most mixture
weights (mk and ck) as confidence scores.

1.4. Compressing location parameters of densities
Most motion forecasting methods regress trajectories at a
frequency of 10 Hz [17–19], allowing models to predict
sudden changes between successive positions that are phys-
ically impossible yet close to the ground truth. Such fore-
casts resemble noisy versions of smooth ground truth trajec-
tories. Therefore, we use a compressed probabilistic rep-
resentation of trajectories without high frequency compo-
nents. Specifically, we incorporate the inverse discrete co-
sine transform (IDCT) into our model to internally repre-
sent density location parameters as a sum of cosine func-
tions (Fig. 1). We hypothesize that this is a natural choice

for transformer models given the use of sinusoidal posi-
tional encodings [16]. To compress, we limit the frequen-
cies in the IDCT to the lower end. This method is data-
independent, making it invariant to dataset or setup-specific
noise (e.g., produced by errors of perception models).

1.5. Scene encoder
We follow Gao et al. [5] and represent multimodal inputs
(i.e., past trajectories, lane data, and traffic light states) as
polyline vectors. We sample temporal features (past po-
sitions and traffic light states) with a frequency of 10 Hz
and static spatial features (lane markings and road borders)
with a resolution of 0.5 meters. We generate embeddings
for each modality with 3-layer MLPs, add sinusoidal posi-
tional encodings, and process the embeddings with trans-
former encoder modules [16]. Following Nayakanti et al.
[12], we initially process local agent-centric views within
scenes (centered around each modeled agent) and compress
them using cross-attention. We then change the batch di-
mension from the agent index to the scene index, and con-
catenate learned embeddings of Cartesian transformation
matrices from agent-centric views into a global reference
frame (cf. [7]). Finally, we add global sinosoidal posi-
tional encodings and generate global scene context repre-
sentations with further self-attention mechanisms. Our two
decoders (Sec. 1.2 and Sec. 1.3) decode probabilistic mo-
tion forecasts from this scene context.

1.6. Loss function
We train our model using maximum likelihood estimation
with a multi-task loss that covers the objectives described
in Sec. 1.2 and Sec. 1.3. Formally, we batchwise minimize
the negative log-likelihood for forecasting the ground truth
trajectories.

L(θ) = 1

N

N∑
n=1

T∑
t=1

− ln
(
P joint
t,k=k̂

)
−λmarginal ln

(
Pmarginal
t,k=k̂

)
,

(4)
where N is number of samples in a batch, λmarginal is a tun-
able weighting factor. We optimize this objective with mul-
tiple trajectories per agent by backpropagating only the er-
ror for the trajectories that are closest to the ground truth
trajectories. We measure the distance to the ground truth
using the ℓ2-norm. For marginal forecasts Pmarginal

1:T , we se-
lect the best trajectory index k̂ per agent. For joint forecasts
P joint
1:T , we select the best set of trajectories at the same index

k̂ for agent pairs (cf. Fig. 1).

2. Experiments
In this section we evaluate the motion forecasting perfor-
mance of our method using the Waymo Open Motion [3]
dataset. Afterwards, we show that regular training of mo-
tion forecasting leads to the ability to adapt basic directional
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Method Params Anchor Anchors Vehicle Pedestrian Cyclist
(active) init. mAP % of scenes mAP % of scenes mAP % of scenes

MTR++ [15] 87M Fixed 64 0.3303

100%

0.2088

57%

0.1587

16%QCNeXt [20] Learned 6 0.3341 0.2346 0.1369
BeTopNet [9] 45M Fixed 64 0.3308 0.2212 0.1717
RetroMotion (SMoE) 24M Learned 30 0.3348 0.2636 0.1284

RetroMotion (SMoE hybrid) 24 or 45M Mixed 94 0.3348 0.2636 0.1572

Table 1. Comparison of state-of-the-art methods for motion forecasting. All metrics are for the interactive test split of the Waymo
Open Motion dataset. Params (active) gives the number of parameters that are active per agent (cf. [6]). % of scenes gives the percentage
of scenes that contain at least one instance of the corresponding agent type. Best scores are bold, second best are underlined.

instructions to the scene context. Furthermore, we compare
distribution types for modeling positional uncertainty.

2.1. Interactive motion forecasting
Model configuration: We configure our marginal de-
coder to forecast marginal trajectories of 8 agents and our
joint decoder to forecast joint trajectory sets for 2 agents
per scenario. Our scene encoder processes the 128 closest
map polylines and up to 48 past trajectories of surrounding
agents per modeled agent. We include an IDCT transform
in our model that reconstructs 80 location parameters (for
x- and y-coordinates) from 16 predicted DCT coefficients.
We build a sparse mixture of experts model (SMoE) [4] of
3 variations of our model. The expert model for vehicles is
trained to forecast 18 trajectories per agent, while the other
experts to forecast 6 trajectories per agent. For the cyclist
expert, we increase the loss weight of cyclist trajectories
10×. All expert models are trained independently. At in-
ference, we use a rule-based router that selects one model
based on the agent type and adapt Konev [8]’s NMS to only
suppress trajectories associated with lower multi-agent mix-
ture weights c (Eq. (3)).

Training details: We sample 32 scenes in a batch, with
8 focal (i.e., predicted) agents per scene. Specifically, we
predict marginal trajectory distributions for all 8 agents
and joint distributions for two interactive agents. We set
λmarginal = 0.5, use AdamW [10] as the optimizer, and a
step learning rate scheduler to halve the initial learning rate
of 2−4 every 10 epochs. We train for 50 epochs using data
distributed parallel (DDP) training on 4 Ada A6000 GPUs.

Results: Tab. 1 presents motion forecasting metrics for
interactive forecasting on the Waymo Open Motion dataset.
Fully data-driven methods with learned anchor1 initializa-
tion (QCNeXt and RetroMotion) tend to perform better on
more common agent types, while using larger models and
more anchors with fixed initialization seems to improve the
results for cyclists. The comparably worse results for cy-
clists indicate that our method would significantly improve
with more training samples, as in the 1000× larger internal

1We refer to the initial vector representation of queries used to decode
trajectories as anchors.

dataset mentioned in [11]. On average, our method outper-
forms related methods that require more active parameters.

Our RetroMotion (SMoE hybrid) configuration is moti-
vated by the fact that models with more anchors and static
anchor initialization perform better for cyclists. We build a
SMoE model with RetroMotion-based experts for vehicles
and pedestrians and a reproduced BeTopNet for cyclists.

2.2. Issuing instructions by modifying trajectories
In the following, we test our model’s ability to adapt basic
directional instructions to the scene context. Specifically,
we issue instructions by modifying predicted marginal tra-
jectories prior to re-encoding and joint modeling (Fig. 1).

We define basic directional instructions for turning left
and right. We describe both instructions with trajectories
based on quarter circles. Specifically, we scale the radius r
of the circle to maintain an agent’s current speed. Then we
use the upper right quadrant, shifted to the origin, as a turn
left instruction, with x(t) = r · cos(t)− r, y(t) = r · sin(t).
Similarly, we use the upper left quadrant as the turn right
instruction.

At inference, we issue the instructions by replacing the
last 4 seconds in all marginal trajectories with the corre-
sponding quarter circle, as shown qualitatively in Fig. 2.

However, such instructions are intentionally not adapted
to the scene context (map and other agents). In this ex-
periment, we evaluate the ability of RetroMotion to adapt
our directional instructions to the given context. Specif-
ically, we measure the overlap rate with other agents [3]
of the modified trajectories used as instructions versus the
subsequently decoded joint trajectories. Furthermore, we
compute average on-road probability (ORP) scores, which
describe the probability of trajectories staying on the road
versus going off-road. We use a rasterized representation of
drivable areas and a distance transform function to compute
the on-road probability maps. The distance transform cal-
culates, for each pixel representing a non-drivable area, the
distance to the closest pixel that represents a drivable area.

Results: Tab. 2 presents the results of this experiment.
Overall, higher ORP scores and lower OR scores are ob-
tained for the turn right than for the turn left instructions.
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Figure 2. Adapting a basic turn left instruction to the scene
context. The upper plot shows the default marginal trajectory fore-
cast of our model. The middle plot shows our basic turn left in-
structions, which violate traffic rules by turning into the oncoming
lanes. The lower plot shows that our model responds to this in-
struction by adapting the trajectory of the right vehicle to its lane
(shown as black line) and reversing the instruction for the left ve-
hicle, since turning left is not possible.

We hypothesize that this is due to the fact that the dataset
mainly contains right-hand traffic scenarios, where right
turns are commonly allowed and more frequent. Notably,
the adjusted joint trajectories have significantly lower OR
scores and much higher ORP scores. This highlights the
ability of our model to adapt basic directional instructions
to the given scene context.

Instruction Eval. trajectory OR ↓ ORP ↑

turn left
basic instruction 0.23 0.64
adapted joint traj. 0.18 -22% 0.85 +33%

turn right
basic instruction 0.21 0.76
adapted joint traj. 0.18 -14% 0.91 +20%

Table 2. Adapting basic directional instructions to the scene
context. As instructions, we modify marginal trajectories and
evaluate the changes in joint trajectories. We report overlap rates
(OR) with other agents and on-road probability (ORP) scores.

2.3. Comparing distribution types
In order to perform an ablation study on our design choices,
we train different configurations of our model. Specifically,
we ablate modeling positional uncertainty with different
probability distributions, including normal, Laplace, and
exponential power distributions. We also train our model
with and without compressing location parameters using
DCT transforms.

We train each model configuration for 14 epochs on the
Waymo Open Motion dataset and keep the remaining con-
figurations as in Sec. 2.1. Tab. 3 presents the results of
this experiment. Using Laplace distributions to model posi-
tional uncertainty improves motion prediction metrics over
using normal distributions. Compressing the location pa-
rameters of densities further improves the results. Overall,
using exponential power distributions with DCT compres-
sion leads to the best results.

Distribution DCT mAP ↑ minFDE ↓ minADE ↓
Normal False 0.172 2.177 0.954
Laplace False 0.176 2.149 0.940
Laplace True 0.194 2.102 0.917
Exponential power True 0.195 2.060 0.910

Table 3. Comparing distribution types with and without DCT
compression. All configurations are evaluated on the interactive
validation split of the Waymo Open Motion dataset.

3. Conclusion
In this work, we decompose the motion forecasting task into
modeling marginal trajectory distributions for all modeled
agents and joint distributions for interacting agents. Our
transformer-based forecasting model incorporates a retro-
causal information flow and models positional uncertainty
through compressed exponential power distributions. This
lowers the modeling burden on initial marginal forecasts
and enables more accurate predictions across diverse sce-
narios. Furthermore, our method’s ability to respond ba-
sic directional instructions reveals an emergent capability
that was not explicitly trained for. This capability can im-
prove simulation and human-AI interaction in self-driving
systems, potentially allowing operators to guide vehicle be-
havior.

Limitations and future work: While the retrocausal in-
formation flow enables us to instruct our model, it can also
lead to less realistic forecasts (cf. acausal reactions [13]).
E.g., instructing a following vehicle to slow down may also
slow down a leading vehicle. This may be caused by the
data-driven nature of our method and many training sam-
ples where the behavior of leading and following vehicles
is correlated. However, following vehicles usually react to
leading vehicles, not vice versa. We leave investigating that
further and mitigating such issues (e.g., by auto-regressive
trajectory generation) to future research.
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